A finite group G G G of order 360 has conjugacy classes C 1 = { 1 } , C 2 , … , C 7 C_{1}=\{1\}, C_{2}, \ldots, C_{7} C 1 = { 1 } , C 2 , … , C 7 of sizes 1 , 45 , 40 , 40 , 90 , 72 , 72 1,45,40,40,90,72,72 1 , 4 5 , 4 0 , 4 0 , 9 0 , 7 2 , 7 2 . The values of four of its irreducible characters are given in the following table.
C 1 C 2 C 3 C 4 C 5 C 6 C 7 5 1 2 − 1 − 1 0 0 8 0 − 1 − 1 0 ( 1 − 5 ) / 2 ( 1 + 5 ) / 2 8 0 − 1 − 1 0 ( 1 + 5 ) / 2 ( 1 − 5 ) / 2 10 − 2 1 1 0 0 0 \begin{array}{ccccccc} C_{1} & C_{2} & C_{3} & C_{4} & C_{5} & C_{6} & C_{7} \\ 5 & 1 & 2 & -1 & -1 & 0 & 0 \\ 8 & 0 & -1 & -1 & 0 & (1-\sqrt{5}) / 2 & (1+\sqrt{5}) / 2 \\ 8 & 0 & -1 & -1 & 0 & (1+\sqrt{5}) / 2 & (1-\sqrt{5}) / 2 \\ 10 & -2 & 1 & 1 & 0 & 0 & 0 \end{array} C 1 5 8 8 1 0 C 2 1 0 0 − 2 C 3 2 − 1 − 1 1 C 4 − 1 − 1 − 1 1 C 5 − 1 0 0 0 C 6 0 ( 1 − 5 ) / 2 ( 1 + 5 ) / 2 0 C 7 0 ( 1 + 5 ) / 2 ( 1 − 5 ) / 2 0
Complete the character table.
[Hint: it will not suffice just to use orthogonality of characters.]
Deduce that the group G G G is simple.