4.II.23H
Part II, 2008
Let be a lattice in generated by 1 and , where . The Weierstrass function is the unique meromorphic -periodic function on , such that the only poles of are at points of and as .
Show that is an even function. Find all the zeroes of .
Suppose that is a complex number such that . Show that the function
has no poles in . By considering the Laurent expansion of at , or otherwise, deduce that is constant.
[General properties of meromorphic doubly-periodic functions may be used without proof if accurately stated.]