1.II.24H

Differential Geometry
Part II, 2008

Let n1n \geqslant 1 be an integer, and let M(n)M(n) denote the set of n×nn \times n real-valued matrices. We make M(n)M(n) into an n2n^{2}-dimensional smooth manifold via the obvious identification M(n)=Rn2M(n)=\mathbb{R}^{n^{2}}.

(a) Let GL(n)G L(n) denote the subset

GL(n)={AM(n):A1 exists }G L(n)=\left\{A \in M(n): A^{-1} \text { exists }\right\}

Show that GL(n)G L(n) is a submanifold of M(n)M(n). What is dimGL(n)\operatorname{dim} G L(n) ?

(b) Now let SL(n)GL(n)S L(n) \subset G L(n) denote the subset

SL(n)={AGL(n):detA=1}S L(n)=\{A \in G L(n): \operatorname{det} A=1\}

Show that for AGL(n)A \in G L(n),

(d det )AB=tr(A1B)detA.(d \text { det })_{A} B=\operatorname{tr}\left(A^{-1} B\right) \operatorname{det} A .

Show that SL(n)S L(n) is a submanifold of GL(n)G L(n). What is the dimension of SL(n)?S L(n) ?

(c) Now consider the set X=M(n)\GL(n)X=M(n) \backslash G L(n). For what values of n1n \geqslant 1 is XX a submanifold of M(n)M(n) ?