2.II
Part II, 2008
(a) For a regular curve in , define curvature and torsion and state the Frenet formulas.
(b) State and prove the isoperimetric inequality for domains with compact closure and boundary .
[You may assume Wirtinger's inequality.]
(c) Let be a closed plane regular curve such that is contained in a disc of radius . Show that there exists such that , where denotes the signed curvature. Show by explicit example that the assumption of closedness is necessary.