4.II
Part II, 2008
Let be a surface.
(a) In the case where is compact, define the Euler characteristic and genus of .
(b) Define the notion of geodesic curvature for regular curves . When is ? State the Global Gauss-Bonnet Theorem (including boundary term).
(c) Let (the standard 2-sphere), and suppose is a simple closed regular curve such that is the union of two distinct connected components with equal areas. Can have everywhere strictly positive or everywhere strictly negative geodesic curvature?
(d) Prove or disprove the following statement: if is connected with Gaussian curvature identically, then is a subset of a sphere of radius 1 .