1.II .25 J. 25 \mathrm{~J} \quad

Probability and Measure
Part II, 2008

State the Dominated Convergence Theorem.

Hence or otherwise prove Kronecker's Lemma: if (aj)\left(a_{j}\right) is a sequence of non-negative reals such that

j=1ajj<\sum_{j=1}^{\infty} \frac{a_{j}}{j}<\infty

then

n1j=1naj0(n)n^{-1} \sum_{j=1}^{n} a_{j} \rightarrow 0 \quad(n \rightarrow \infty)

Let ξ1,ξ2,\xi_{1}, \xi_{2}, \ldots be independent N(0,1)N(0,1) random variables and set Sn=ξ1++ξnS_{n}=\xi_{1}+\ldots+\xi_{n}. Let F0\mathcal{F}_{0} be the collection of all finite unions of intervals of the form (a,b)(a, b), where aa and bb are rational, together with the whole line R\mathbb{R}. Prove that with probability 1 the limit

m(B)limn1nj=1nIB(Sj)m(B) \equiv \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} I_{B}\left(S_{j}\right)

exists for all BF0B \in \mathcal{F}_{0}, and identify it. Is it possible to extend mm defined on F0\mathcal{F}_{0} to a measure on the Borel σ\sigma-algebra of R\mathbb{R} ? Justify your answer.