Paper 4, Section II, G
State the Riemann-Roch theorem for a smooth projective curve , and use it to outline a proof of the Riemann-Hurwitz formula for a non-constant morphism between projective nonsingular curves in characteristic zero.
Let be a smooth projective plane cubic over an algebraically closed field of characteristic zero, written in normal form for a homogeneous cubic polynomial , and let be the point at infinity. Taking the group law on for which is the identity element, let be a point of order 3 . Show that there exists a linear form such that .
Let be nonzero linear forms. Suppose the lines are distinct, do not meet at a point of , and are nowhere tangent to . Let be given by the vanishing of the polynomials
Show that has genus 4 . [You may assume without proof that is an irreducible smooth curve.]