Paper 2, Section II, B

Numerical Analysis
Part II, 2009

The Poisson equation 2u=f\nabla^{2} u=f in the unit square Ω=[0,1]×[0,1]\Omega=[0,1] \times[0,1], equipped with appropriate boundary conditions on Ω\partial \Omega, is discretized with the nine-point formula:

Γ9[um,n]:=103um,n+23(um+1,n+um1,n+um,n+1+um,n1)+16(um+1,n+1+um+1,n1+um1,n+1+um1,n1)=h2fm,n\begin{aligned} \Gamma_{9}\left[u_{m, n}\right] &:=-\frac{10}{3} u_{m, n}+\frac{2}{3}\left(u_{m+1, n}+u_{m-1, n}+u_{m, n+1}+u_{m, n-1}\right) \\ &+\frac{1}{6}\left(u_{m+1, n+1}+u_{m+1, n-1}+u_{m-1, n+1}+u_{m-1, n-1}\right)=h^{2} f_{m, n} \end{aligned}

where 1m,nM,um,nu(mh,nh)1 \leqslant m, n \leqslant M, u_{m, n} \approx u(m h, n h), and (mh,nh)(m h, n h) are grid points.

(i) Find the local error of approximation.

(ii) Prove that the error is smaller if ff happens to satisfy the Laplace equation 2f=0.\nabla^{2} f=0 .

(iii) Hence show that the modified nine-point scheme

Γ9[um,n]=h2fm,n+112h2Γ5[fm,n]:=h2fm,n+112h2(fm+1,n+fm1,n+fm,n+1+fm,n14fm,n)\begin{aligned} \Gamma_{9}\left[u_{m, n}\right] &=h^{2} f_{m, n}+\frac{1}{12} h^{2} \Gamma_{5}\left[f_{m, n}\right] \\ &:=h^{2} f_{m, n}+\frac{1}{12} h^{2}\left(f_{m+1, n}+f_{m-1, n}+f_{m, n+1}+f_{m, n-1}-4 f_{m, n}\right) \end{aligned}

has the same smaller error as in (ii).

[Hint. The nine-point discretization of 2u\nabla^{2} u can be written as

Γ9[u]=(Γ5+16Δx2Δy2)u=(Δx2+Δy2+16Δx2Δy2)u\Gamma_{9}[u]=\left(\Gamma_{5}+\frac{1}{6} \Delta_{x}^{2} \Delta_{y}^{2}\right) u=\left(\Delta_{x}^{2}+\Delta_{y}^{2}+\frac{1}{6} \Delta_{x}^{2} \Delta_{y}^{2}\right) u

where Γ5[u]=(Δx2+Δy2)u\Gamma_{5}[u]=\left(\Delta_{x}^{2}+\Delta_{y}^{2}\right) u is the five-point discretization and

Δx2u(x,y):=u(xh,y)2u(x,y)+u(x+h,y)Δy2u(x,y):=u(x,yh)2u(x,y)+u(x,y+h)\begin{aligned} &\Delta_{x}^{2} u(x, y):=u(x-h, y)-2 u(x, y)+u(x+h, y) \\ &\Delta_{y}^{2} u(x, y):=u(x, y-h)-2 u(x, y)+u(x, y+h) \end{aligned}