Paper 1, Section II, B

Partial Differential Equations
Part II, 2009

Consider the initial value problem for the so-called Liouville equation

ft+vxfV(x)vf=0,(x,v)R2d,tRf(x,v,t=0)=fI(x,v)\begin{gathered} f_{t}+v \cdot \nabla_{x} f-\nabla V(x) \cdot \nabla_{v} f=0,(x, v) \in \mathbb{R}^{2 d}, t \in \mathbb{R} \\ f(x, v, t=0)=f_{I}(x, v) \end{gathered}

for the function f=f(x,v,t)f=f(x, v, t) on R2d×R\mathbb{R}^{2 d} \times \mathbb{R}. Assume that V=V(x)V=V(x) is a given function with V,xVV, \nabla_{x} V Lipschitz continuous on Rd\mathbb{R}^{d}.

(i) Let fI(x,v)=δ(xx0,vv0)f_{I}(x, v)=\delta\left(x-x_{0}, v-v_{0}\right), for x0,v0Rdx_{0}, v_{0} \in \mathbb{R}^{d} given. Show that a solution ff is given by

f(x,v,t)=δ(xx^(t,x0,v0),vv^(t,x0,v0))f(x, v, t)=\delta\left(x-\hat{x}\left(t, x_{0}, v_{0}\right), v-\hat{v}\left(t, x_{0}, v_{0}\right)\right)

where (x^,v^)(\hat{x}, \hat{v}) solve the Newtonian system

x^˙=v^,x^(t=0)=x0v^˙=V(x^),v^(t=0)=v0\begin{array}{ll} \dot{\hat{x}}=\hat{v}, & \hat{x}(t=0)=x_{0} \\ \dot{\hat{v}}=-\nabla V(\hat{x}), & \hat{v}(t=0)=v_{0} \end{array}

(ii) Let fILloc1(R2d),fI0f_{I} \in L_{l o c}^{1}\left(\mathbb{R}^{2 d}\right), f_{I} \geqslant 0. Prove (by using characteristics) that ff remains nonnegative (as long as it exists).

(iii) Let fILp(R2d),fI0f_{I} \in L^{p}\left(\mathbb{R}^{2 d}\right), f_{I} \geqslant 0 on R2d\mathbb{R}^{2 d}. Show (by a formal argument) that

f(,,t)Lp(R2d)=fILp(R2d)\|f(\cdot, \cdot, t)\|_{L^{p}\left(\mathbb{R}^{2 d}\right)}=\left\|f_{I}\right\|_{L^{p}\left(\mathbb{R}^{2 d}\right)}

for all tR,1p<t \in \mathbb{R}, 1 \leqslant p<\infty.

(iv) Let V(x)=12x2V(x)=\frac{1}{2}|x|^{2}. Use the method of characteristics to solve the initial value problem for general initial data.