Paper 3, Section II, B

Partial Differential Equations
Part II, 2009

(a) Consider the nonlinear elliptic problem

{Δu=f(u,x),xΩRdu=uD,xΩ\begin{cases}\Delta u=f(u, x), & x \in \Omega \subseteq \mathbb{R}^{d} \\ u=u_{D}, & x \in \partial \Omega\end{cases}

Let fu(y,x)0\frac{\partial f}{\partial u}(y, x) \geqslant 0 for all yR,xΩy \in \mathbb{R}, x \in \Omega. Prove that there exists at most one classical solution.

[Hint: Use the weak maximum principle.]

(b) Let φC0(Rn)\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right) be a radial function. Prove that the Fourier transform of φ\varphi is radial too.

(c) Let φC0(Rn)\varphi \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right) be a radial function. Solve

Δu+u=φ(x),xRn-\Delta u+u=\varphi(x), \quad x \in \mathbb{R}^{n}

by Fourier transformation and prove that uu is a radial function.

(d) State the Lax-Milgram lemma and explain its use in proving the existence and uniqueness of a weak solution of

Δu+a(x)u=f(x),xΩu=0 on Ω\begin{gathered} -\Delta u+a(x) u=f(x), x \in \Omega \\ u=0 \text { on } \partial \Omega \end{gathered}

where ΩRd\Omega \subseteq \mathbb{R}^{d} bounded, 0aa(x)aˉ<0 \leqslant \underline{a} \leqslant a(x) \leqslant \bar{a}<\infty for all xΩx \in \Omega and fL2(Ω)f \in L^{2}(\Omega).