Paper 4, Section II, B

Partial Differential Equations
Part II, 2009

Consider the two-dimensional domain

G={(x,y)R12<x2+y2<R22}G=\left\{(x, y) \mid R_{1}^{2}<x^{2}+y^{2}<R_{2}^{2}\right\}

where 0<R1<R2<0<R_{1}<R_{2}<\infty. Solve the Dirichlet boundary value problem for the Laplace equation

Δu=0 in G,u=u1(φ),r=R1,u=u2(φ),r=R2,\begin{gathered} \Delta u=0 \text { in } G, \\ u=u_{1}(\varphi), r=R_{1}, \\ u=u_{2}(\varphi), r=R_{2}, \end{gathered}

where (r,φ)(r, \varphi) are polar coordinates. Assume that u1,u2u_{1}, u_{2} are 2π2 \pi-periodic functions on the real line and u1,u2Lloc2(R)u_{1}, u_{2} \in L_{l o c}^{2}(\mathbb{R}).

[Hint: Use separation of variables in polar coordinates, u=R(r)Φ(φ)u=R(r) \Phi(\varphi), with periodic boundary conditions for the function Φ\Phi of the angle variable. Use an ansatz of the form R(r)=rαR(r)=r^{\alpha} for the radial function.]