Paper 3, Section II, C
(i) Consider two quantum systems with angular momentum states and . The eigenstates corresponding to their combined angular momentum can be written as
where are Clebsch-Gordan coefficients for addition of angular momenta one and . What are the possible values of and how must and be related for ?
Construct all states in terms of product states in the case .
(ii) A general stationary state for an electron in a hydrogen atom is specified by the principal quantum number in addition to the labels and corresponding to the total orbital angular momentum and its component in the 3-direction (electron spin is ignored). An oscillating electromagnetic field can induce a transition to a new state and, in a suitable approximation, the amplitude for this to occur is proportional to
where are components of the electron's position. Give clear but concise arguments based on angular momentum which lead to conditions on and for the amplitude to be non-zero.
Explain briefly how parity can be used to obtain an additional selection rule.
[Standard angular momentum states are joint eigenstates of and , obeying
You may also assume that and have commutation relations with orbital angular momentum given by
Units in which are to be used throughout. ]