Paper 3, Section II, J

Applied Probability
Part II, 2009

(a) Define the Poisson process (Nt,t0)\left(N_{t}, t \geqslant 0\right) with rate λ>0\lambda>0, in terms of its holding times. Show that for all times t0,Ntt \geqslant 0, N_{t} has a Poisson distribution, with a parameter which you should specify.

(b) Let XX be a random variable with probability density function

f(x)=12λ3x2eλx1{x>0}.f(x)=\frac{1}{2} \lambda^{3} x^{2} e^{-\lambda x} \mathbf{1}_{\{x>0\}} .

Prove that XX is distributed as the sum Y1+Y2+Y3Y_{1}+Y_{2}+Y_{3} of three independent exponential random variables of rate λ\lambda. Calculate the expectation, variance and moment generating function of XX.

Consider a renewal process (Xt,t0)\left(X_{t}, t \geqslant 0\right) with holding times having density ()(*). Prove that the renewal function m(t)=E(Xt)m(t)=\mathbb{E}\left(X_{t}\right) has the form

m(t)=λt313p1(t)23p2(t)m(t)=\frac{\lambda t}{3}-\frac{1}{3} p_{1}(t)-\frac{2}{3} p_{2}(t)

where p1(t)=P(Nt=1mod3),p2(t)=P(Nt=2mod3)p_{1}(t)=\mathbb{P}\left(N_{t}=1 \bmod 3\right), p_{2}(t)=\mathbb{P}\left(N_{t}=2 \bmod 3\right) and (Nt,t0)\left(N_{t}, t \geqslant 0\right) is the Poisson process of rate λ\lambda.

(c) Consider the delayed renewal process (XtD,t0)\left(X_{t}^{\mathrm{D}}, t \geqslant 0\right) with holding times S1D,S2,S3,S_{1}^{\mathrm{D}}, S_{2}, S_{3}, \ldots where (Sn,n1)\left(S_{n}, n \geqslant 1\right), are the holding times of (Xt,t0)\left(X_{t}, t \geqslant 0\right) from (b). Specify the distribution of S1DS_{1}^{\mathrm{D}} for which the delayed process becomes the renewal process in equilibrium.

[You may use theorems from the course provided that you state them clearly.]