Paper 4, Section II, J

Applied Probability
Part II, 2009

A flea jumps on the vertices of a triangle ABCA B C; its position is described by a continuous time Markov chain with a QQ-matrix

Q=(110011101)ABCQ=\left(\begin{array}{ccc} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & -1 \end{array}\right) \quad \begin{aligned} &A \\ &B \\ &C \end{aligned}

(a) Draw a diagram representing the possible transitions of the flea together with the rates of each of these transitions. Find the eigenvalues of QQ and express the transition probabilities pxy(t),x,y=A,B,Cp_{x y}(t), x, y=A, B, C, in terms of these eigenvalues.

[Hint: det(QμI)=(1μ)3+1\operatorname{det}(Q-\mu \mathbf{I})=(-1-\mu)^{3}+1. Specifying the equilibrium distribution may help.]

Hence specify the probabilities P(Nt=imod3)\mathbb{P}\left(N_{t}=i \bmod 3\right) where (Nt,t0)\left(N_{t}, t \geqslant 0\right) is a Poisson process of rate 1.1 .

(b) A second flea jumps on the vertices of the triangle ABCA B C as a Markov chain with Q-matrix

Q=(ρ0ρρρ00ρρ)ABCQ^{\prime}=\left(\begin{array}{ccc} -\rho & 0 & \rho \\ \rho & -\rho & 0 \\ 0 & \rho & -\rho \end{array}\right) \quad \begin{aligned} &A \\ &B \\ &C \end{aligned}

where ρ>0\rho>0 is a given real number. Let the position of the second flea at time tt be denoted by YtY_{t}. We assume that (Yt,t0)\left(Y_{t}, t \geqslant 0\right) is independent of (Xt,t0)\left(X_{t}, t \geqslant 0\right). Let p(t)=P(Xt=Yt)p(t)=\mathbb{P}\left(X_{t}=Y_{t}\right). Show that limtp(t)\lim _{t \rightarrow \infty} p(t) exists and is independent of the starting points of XX and YY. Compute this limit.