Paper 1, Section II, J
An investor must decide how to invest his initial wealth in assets for the coming year. At the end of the year, one unit of asset will be worth , where has a multivariate normal distribution with mean and non-singular covariance matrix . At the beginning of the year, one unit of asset costs . In addition, he may invest in a riskless bank account; an initial investment of 1 in the bank account will have grown to at the end of the year.
(a) The investor chooses to hold units of asset , with the remaining in the bank account. His objective is to minimise the variance of his wealth at the end of the year, subject to a required mean value for . Derive the optimal portfolio , and the minimised variance.
(b) Describe the set of achievable pairs of mean and variance of the terminal wealth. Explain what is meant by the mean-variance efficient frontier as you do so.
(c) Suppose that the investor requires expected mean wealth at time 1 to be . He wishes to minimise the expected shortfall subject to this requirement. Show that he will choose a portfolio corresponding to a point on the mean-variance efficient frontier.