Paper 2, Section I, 2F2 F

Topics in Analysis
Part II, 2009

(a) State Chebychev's Equal Ripple Criterion.

(b) Let nn be a positive integer, a0,a1,,an1Ra_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{R} and

p(x)=xn+an1xn1++a1x+a0.p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} .

Use Chebychev's Equal Ripple Criterion to prove that

supx[1,1]p(x)21n\sup _{x \in[-1,1]}|p(x)| \geqslant 2^{1-n}

[You may use without proof that there is a polynomial Tn(x)T_{n}(x) in xx of degree nn, with the coefficient of xnx^{n} equal to 2n12^{n-1}, such that Tn(cosθ)=cosnθT_{n}(\cos \theta)=\cos n \theta for all θR\theta \in \mathbb{R}.]