Let X1,X2,…, be a sequence of independent, identically distributed positive random variables, with a common probability density function f(x),x>0. Call Xn a record value if Xn>max{X1,…,Xn−1}. Consider the sequence of record values
V0=0,V1=X1,…,Vn=Xin,
where
in=min{i⩾1:Xi>Vn−1},n>1.
Define the record process (Rt)t⩾0 by R0=0 and
Rt=max{n⩾1:Vn<t},t>0
(a) By induction on n, or otherwise, show that the joint probability density function of the random variables V1,…,Vn is given by:
fV1,…,Vn(x1,…,xn)=f(x1)1−F(x1)f(x2)×…×1−F(xn−1)f(xn),
where F(x)=∫0xf(y)dy is the cumulative distribution function for f(x).
(b) Prove that the random variable Rt has a Poisson distribution with parameter Λ(t) of the form
Λ(t)=∫0tλ(s)ds,
and determine the 'instantaneous rate' λ(s).
[Hint: You may use the formula
P(Rt=k)=P(Vk⩽t<Vk+1)=∫0t…∫0t1{t1<…<tk}fV1,…,Vk(t1,…,tk)×P(Vk+1>t∣V1=t1,…,Vk=tk)j=1∏k dtj,
for any k⩾1.]