Paper 3, Section II, A

Asymptotic Methods
Part II, 2009

Consider the contour-integral representation

J0(x)=Re1iπCeixcoshtdtJ_{0}(x)=\operatorname{Re} \frac{1}{i \pi} \int_{C} e^{i x \cosh t} d t

of the Bessel function J0J_{0} for real xx, where CC is any contour from iπ2-\infty-\frac{i \pi}{2} to ++iπ2+\infty+\frac{i \pi}{2}.

Writing t=u+ivt=u+i v, give in terms of the real quantities u,vu, v the equation of the steepest-descent contour from iπ2-\infty-\frac{i \pi}{2} to ++iπ2+\infty+\frac{i \pi}{2} which passes through t=0t=0.

Deduce the leading term in the asymptotic expansion of J0(x)J_{0}(x), valid as xx \rightarrow \infty

J0(x)2πxcos(xπ4)J_{0}(x) \sim \sqrt{\frac{2}{\pi x}} \cos \left(x-\frac{\pi}{4}\right)