Paper 4, Section II, A

Asymptotic Methods
Part II, 2009

The differential equation

f=Q(x)ff^{\prime \prime}=Q(x) f

has a singular point at x=x=\infty. Assuming that Q(x)>0Q(x)>0, write down the Liouville Green lowest approximations f±(x)f_{\pm}(x) for xx \rightarrow \infty, with f(x)0f_{-}(x) \rightarrow 0.

The Airy function Ai(x)\operatorname{Ai}(x) satisfies ()(*) with

Q(x)=xQ(x)=x

and Ai(x)0\operatorname{Ai}(x) \rightarrow 0 as xx \rightarrow \infty. Writing

Ai(x)=w(x)f(x)\operatorname{Ai}(x)=w(x) f_{-}(x)

show that w(x)w(x) obeys

x2w(2x5/2+12x)w+516w=0x^{2} w^{\prime \prime}-\left(2 x^{5 / 2}+\frac{1}{2} x\right) w^{\prime}+\frac{5}{16} w=0

Derive the expansion

wc(1548x3/2) as xw \sim c\left(1-\frac{5}{48} x^{-3 / 2}\right) \quad \text { as } \quad x \rightarrow \infty

where cc is a constant.