Paper 4, Section I, E
Part II, 2009
(a) A Hamiltonian system with degrees of freedom has the Hamiltonian , where are the coordinates and are the momenta.
A second Hamiltonian system has the Hamiltonian . Neither nor contains the time explicitly. Show that the condition for to be invariant under the evolution of the coordinates and momenta generated by the Hamiltonian is that the Poisson bracket vanishes. Deduce that is a constant of the motion for evolution under .
Show that, when , where is constant, the motion it generates is a translation of each by an amount , while the corresponding remains fixed. What do you infer is conserved when is invariant under this transformation?
(b) When and is a function of and only, find when