Paper 4, Section I, D

Cosmology
Part II, 2009

(a) Consider the motion of three galaxies O,A,BO, A, B at positions rO,rA,rB\mathbf{r}_{O}, \mathbf{r}_{A}, \mathbf{r}_{B} in an isotropic and homogeneous universe. Assuming non-relativistic velocities v(r)\mathbf{v}(\mathbf{r}), show that spatial homogeneity implies

v(rBrA)=v(rBrO)v(rArO)\mathbf{v}\left(\mathbf{r}_{B}-\mathbf{r}_{A}\right)=\mathbf{v}\left(\mathbf{r}_{B}-\mathbf{r}_{O}\right)-\mathbf{v}\left(\mathbf{r}_{A}-\mathbf{r}_{O}\right)

that is, that the velocity field v\mathbf{v} is linearly related to r\mathbf{r} by

vi=jHijrj,v_{i}=\sum_{j} H_{i j} r_{j},

where the matrix coefficients HijH_{i j} are independent of r\mathbf{r}. Further show that isotropy implies Hubble's law,

v=Hr\mathbf{v}=H \mathbf{r} \text {, }

where the Hubble parameter HH is independent of r\mathbf{r}. Presuming HH to be a function of time tt, show that Hubble's law can be integrated to obtain the solution

r(t)=a(t)x\mathbf{r}(t)=a(t) \mathbf{x}

where x\mathbf{x} is a constant (comoving) position and the scalefactor a(t)a(t) satisfies H=a˙/aH=\dot{a} / a.

(b) Define the cosmological horizon dH(t)d_{H}(t). For models with a(t)=tαa(t)=t^{\alpha} where 0<α<10<\alpha<1, show that the cosmological horizon dH(t)=ct/(1α)d_{H}(t)=c t /(1-\alpha) is finite. Briefly explain the horizon problem.