Paper 1, Section II, H

Differential Geometry
Part II, 2009

(i) Define manifold and manifold with boundary for subsets XRNX \subset \mathbb{R}^{N}.

(ii) Let XX and YY be manifolds and f:XYf: X \rightarrow Y a smooth map. Define what it means for yYy \in Y to be a regular value of ff.

(iii) Let n0n \geqslant 0 and let Sn\mathbb{S}^{n} denote the set {(x1,,xn+1)Rn+1:i=1n+1(xi)2=1}\left\{\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1}\left(x^{i}\right)^{2}=1\right\}. Let Bn+1B^{n+1} denote the set {(x1,,xn+1)Rn+1:i=1n+1(xi)21}\left\{\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{R}^{n+1}: \sum_{i=1}^{n+1}\left(x^{i}\right)^{2} \leqslant 1\right\}. Show that Sn\mathbb{S}^{n} is an nn-dimensional manifold and Bn+1B^{n+1} is an (n+1)(n+1)-dimensional manifold with boundary, with Bn+1=Sn\partial B^{n+1}=\mathbb{S}^{n}.

[You may use standard theorems involving regular values of smooth functions provided that you state them clearly.]

(iv) For n0n \geqslant 0, consider the map h:SnSnh: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n} taking x\mathbf{x} to x-\mathbf{x}. Show that hh is smooth. Now let ff be a smooth map f:SnSnf: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n} such that fh=ff \circ h=f. Show that ff is not smoothly homotopic to the identity map.