Paper 4, Section I, 7E7 \mathbf{E}

Dynamical Systems
Part II, 2009

Consider the two-dimensional dynamical system x˙=f(x)\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}) given in polar coordinates by

r˙=(rr2)(rg(θ)),θ˙=r,\begin{aligned} &\dot{r}=\left(r-r^{2}\right)(r-g(\theta)), \\ &\dot{\theta}=r, \end{aligned}

θ˙=r,\begin{aligned} & \dot{\theta}=r, \end{aligned}

where g(θ)g(\theta) is continuously differentiable and 2π2 \pi-periodic. Find a periodic orbit γ\gamma for ()(*) and, using the hint or otherwise, compute the Floquet multipliers of γ\gamma in terms of g(θ)g(\theta). Explain why one of the Floquet multipliers is independent of g(θ)g(\theta). Give a sufficient condition for γ\gamma to be asymptotically stable.

Investigate the stability of γ\gamma and the dynamics of ()(*) in the case g(θ)=2sinθg(\theta)=2 \sin \theta.

[Hint: The determinant of the fundamental matrix Φ(t)\Phi(t) satisfies

ddtdetΦ=(f)detΦ\frac{d}{d t} \operatorname{det} \Phi=(\nabla \cdot \mathbf{f}) \operatorname{det} \Phi