Paper 3, Section II, H

Galois Theory
Part II, 2009

Let K=Fp(x)K=\mathbb{F}_{p}(x), the function field in one variable, and let G=FpG=\mathbb{F}_{p}. The group GG acts as automorphisms of KK by σa(x)=x+a\sigma_{a}(x)=x+a. Show that KG=Fp(y)K^{G}=\mathbb{F}_{p}(y), where y=xpxy=x^{p}-x.

[State clearly any theorems you use.]

Is K/KGK / K^{G} a separable extension?

Now let

H={(da01):aFp,dFp}H=\left\{\left(\begin{array}{ll} d & a \\ 0 & 1 \end{array}\right): a \in \mathbb{F}_{p}, d \in \mathbb{F}_{p}^{*}\right\}

and let HH act on KK by (da01)x=dx+a\left(\begin{array}{ll}d & a \\ 0 & 1\end{array}\right) x=d x+a. (The group structure on HH is given by matrix multiplication.) Compute KHK^{H}. Describe your answer in the form Fp(z)\mathbb{F}_{p}(z) for an explicit zKz \in K.

Is KG/KHK^{G} / K^{H} a Galois extension? Find the minimum polynomial for yy over the field KHK^{H}.