Paper 1, Section II, D
Write down the differential equations governing geodesic curves both when is an affine parameter and when it is a general one.
A conformal transformation of a spacetime is given by
Obtain a formula for the new Christoffel symbols in terms of the old ones and the derivatives of . Hence show that null geodesics in the metric are also geodesic in the metric .
Show that the Riemann tensor has only one independent component in two dimensions, and hence derive
where is the Ricci scalar.
It is given that in a 2-dimensional spacetime transforms as
where . Assuming that the equation can always be solved, show that can be chosen to set to be the metric of 2-dimensional Minkowski spacetime. Hence show that all null curves in are geodesic.
Discuss the null geodesics if the line element of is
where or and .