Paper 3, Section I, G

Number Theory
Part II, 2009

For any integer x2x \geqslant 2, define θ(x)=pxlogp\theta(x)=\sum_{p \leqslant x} \log p, where the sum is taken over all primes pxp \leqslant x. Put θ(1)=0\theta(1)=0. By studying the integer

(2nn)\left(\begin{array}{c} 2 n \\ n \end{array}\right)

where n1n \geqslant 1 is an integer, prove that

θ(2n)θ(n)<2nlog2\theta(2 n)-\theta(n)<2 n \log 2

Deduce that

θ(x)<(4log2)x\theta(x)<(4 \log 2) x

for all x1x \geqslant 1.