Paper 1, Section II, E

Partial Differential Equations
Part II, 2010

(a) Solve by using the method of characteristics

x1x1u+2x2x2u=5u,u(x1,1)=g(x1),x_{1} \frac{\partial}{\partial x_{1}} u+2 x_{2} \frac{\partial}{\partial x_{2}} u=5 u, \quad u\left(x_{1}, 1\right)=g\left(x_{1}\right),

where g:RRg: \mathbb{R} \rightarrow \mathbb{R} is continuous. What is the maximal domain in R2\mathbb{R}^{2} in which uu is a solution of the Cauchy problem?

(b) Prove that the function

u(x,t)={0,x<0,t>0x/t,0<x<t,t>01,x>t>0u(x, t)=\left\{\begin{array}{cl} 0, & x<0, t>0 \\ x / t, & 0<x<t, t>0 \\ 1, & x>t>0 \end{array}\right.

is a weak solution of the Burgers equation

tu+12xu2=0,xR,t>0\frac{\partial}{\partial t} u+\frac{1}{2} \frac{\partial}{\partial x} u^{2}=0, \quad x \in \mathbb{R}, t>0

with initial data

u(x,0)={0,x<01,x>0u(x, 0)= \begin{cases}0, & x<0 \\ 1, & x>0\end{cases}

(c) Let u=u(x,t),xR,t>0u=u(x, t), x \in \mathbb{R}, t>0 be a piecewise C1C^{1}-function with a jump discontinuity along the curve

Γ:x=s(t)\Gamma: x=s(t)

and let uu solve the Burgers equation ()(*) on both sides of Γ\Gamma. Prove that uu is a weak solution of (1) if and only if

s˙(t)=12(ul(t)+ur(t))\dot{s}(t)=\frac{1}{2}\left(u_{l}(t)+u_{r}(t)\right)

holds, where ul(t),ur(t)u_{l}(t), u_{r}(t) are the one-sided limits

ul(t)=limxs(t)u(x,t),ur(t)=limxs(t)+u(x,t)u_{l}(t)=\lim _{x \nearrow_{s}(t)^{-}} u(x, t), \quad u_{r}(t)=\lim _{x \searrow s(t)^{+}} u(x, t)

[Hint: Multiply the equation by a test function ϕC0(R×[0,))\phi \in C_{0}^{\infty}(\mathbb{R} \times[0, \infty)), split the integral appropriately and integrate by parts. Consider how the unit normal vector along Γ\Gamma can be expressed in terms of s˙\dot{s}.]