Paper 2, Section II, E

Partial Differential Equations
Part II, 2010

(a) State the Lax-Milgram lemma. Use it to prove that there exists a unique function uu in the space

H2(Ω)={uH2(Ω);uΩ=u/γΩ=0}H_{\partial}^{2}(\Omega)=\left\{u \in H^{2}(\Omega) ;\left.u\right|_{\partial \Omega}=\partial u /\left.\partial \gamma\right|_{\partial \Omega}=0\right\}

where Ω\Omega is a bounded domain in Rn\mathbb{R}^{n} with smooth boundary and γ\gamma its outwards unit normal vector, which is the weak solution of the equations

Δ2u=f in Ω,u=uγ=0 on Ω,\begin{aligned} \Delta^{2} u &=f \text { in } \Omega, \\ u &=\frac{\partial u}{\partial \gamma}=0 \text { on } \partial \Omega, \end{aligned}

for fL2(Ω),Δf \in L^{2}(\Omega), \Delta the Laplacian and Δ2=ΔΔ\Delta^{2}=\Delta \Delta.

[Hint: Use regularity of the solution of the Dirichlet problem for the Poisson equation.]

(b) Let ΩRn\Omega \subset \mathbb{R}^{n} be a bounded domain with smooth boundary. Let uH1(Ω)u \in H^{1}(\Omega) and denote

uˉ=Ωudnx/Ωdnx\bar{u}=\int_{\Omega} u d^{n} x / \int_{\Omega} d^{n} x

The following Poincaré-type inequality is known to hold

uuˉL2CuL2\|u-\bar{u}\|_{L^{2}} \leqslant C\|\nabla u\|_{L^{2}}

where CC only depends on Ω\Omega. Use the Lax-Milgram lemma and this Poincaré-type inequality to prove that the Neumann problem

Δu=f in Ωuγ=0 on Ω\begin{aligned} &\Delta u=f \text { in } \Omega \\ &\frac{\partial u}{\partial \gamma}=0 \text { on } \partial \Omega \end{aligned}

has a unique weak solution in the space

H1(Ω)=H1(Ω){u:ΩR;uˉ=0}H_{-}^{1}(\Omega)=H^{1}(\Omega) \cap\{u: \Omega \rightarrow \mathbb{R} ; \bar{u}=0\}

if and only if fˉ=0\bar{f}=0.