Paper 3, Section II, 30E

Partial Differential Equations
Part II, 2010

Consider the Schrödinger equation

itΨ=12ΔΨ,xRn,t>0i \partial_{t} \Psi=-\frac{1}{2} \Delta \Psi, \quad x \in \mathbb{R}^{n}, t>0

for complex-valued solutions Ψ(x,t)\Psi(x, t) and where Δ\Delta is the Laplacian.

(a) Derive, by using a Fourier transform and its inversion, the fundamental solution of the Schrödinger equation. Obtain the solution of the initial value problem

itΨ=12ΔΨ,xRn,t>0Ψ(x,0)=f(x),xRn\begin{aligned} i \partial_{t} \Psi=-\frac{1}{2} \Delta \Psi, & x \in \mathbb{R}^{n}, \quad t>0 \\ \Psi(x, 0)=f(x), & x \in \mathbb{R}^{n} \end{aligned}

as a convolution.

(b) Consider the Wigner-transform of the solution of the Schrödinger equation

w(x,ξ,t)=1(2π)nRnΨ(x+12y,t)Ψˉ(x12y,t)eiyξdnyw(x, \xi, t)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \Psi\left(x+\frac{1}{2} y, t\right) \bar{\Psi}\left(x-\frac{1}{2} y, t\right) e^{-i y \cdot \xi} \mathrm{d}^{n} y

defined for xRn,ξRn,t>0x \in \mathbb{R}^{n}, \xi \in \mathbb{R}^{n}, t>0. Derive an evolution equation for ww by using the Schrödinger equation. Write down the solution of this evolution equation for given initial data w(x,ξ,0)=g(x,ξ)w(x, \xi, 0)=g(x, \xi).