Paper 4, Section II, 30E

Partial Differential Equations
Part II, 2010

a) Solve the Dirichlet problem for the Laplace equation in a disc in R2\mathbb{R}^{2}

Δu=0 in G={x2+y2<R2}R2,R>0u=uD on G\begin{aligned} \Delta u &=0 \quad \text { in } \quad G=\left\{x^{2}+y^{2}<R^{2}\right\} \subseteq \mathbb{R}^{2}, R>0 \\ u &=u_{D} \quad \text { on } \quad \partial G \end{aligned}

using polar coordinates (r,φ)(r, \varphi) and separation of variables, u(x,y)=R(r)Θ(φ)u(x, y)=R(r) \Theta(\varphi). Then use the ansatz R(r)=rαR(r)=r^{\alpha} for the radial function.

b) Solve the Dirichlet problem for the Laplace equation in a square in R2\mathbb{R}^{2}

Δu=0 in G=[0,a]×[0,a]u(x,0)=f1(x),u(x,a)=f2(x),u(0,y)=f3(y),u(a,y)=f4(y)\begin{aligned} &\Delta u=0 \quad \text { in } \quad G=[0, a] \times[0, a] \\ &u(x, 0)=f_{1}(x), \quad u(x, a)=f_{2}(x), \quad u(0, y)=f_{3}(y), \quad u(a, y)=f_{4}(y) \end{aligned}