a) Solve the Dirichlet problem for the Laplace equation in a disc in R2
Δuu=0 in G={x2+y2<R2}⊆R2,R>0=uD on ∂G
using polar coordinates (r,φ) and separation of variables, u(x,y)=R(r)Θ(φ). Then use the ansatz R(r)=rα for the radial function.
b) Solve the Dirichlet problem for the Laplace equation in a square in R2
Δu=0 in G=[0,a]×[0,a]u(x,0)=f1(x),u(x,a)=f2(x),u(0,y)=f3(y),u(a,y)=f4(y)