Paper 3, Section II, I

Probability and Measure
Part II, 2010

Let (Xn:nN)\left(X_{n}: n \in \mathbb{N}\right) be a sequence of independent random variables with common density function

f(x)=1π(1+x2)f(x)=\frac{1}{\pi\left(1+x^{2}\right)}

Fix α[0,1]\alpha \in[0,1] and set

Yn=sgn(Xn)Xnα,Sn=Y1++YnY_{n}=\operatorname{sgn}\left(X_{n}\right)\left|X_{n}\right|^{\alpha}, \quad S_{n}=Y_{1}+\ldots+Y_{n}

Show that for all α[0,1]\alpha \in[0,1] the sequence of random variables Sn/nS_{n} / n converges in distribution and determine the limit.

[Hint: In the case α=1\alpha=1 it may be useful to prove that E(eiuX1)=eu\mathbb{E}\left(e^{i u X_{1}}\right)=e^{-|u|}, for all uR.]\left.u \in \mathbb{R} .\right]

Show further that for all α[0,1/2)\alpha \in[0,1 / 2) the sequence of random variables Sn/nS_{n} / \sqrt{n} converges in distribution and determine the limit.

[You should state clearly any result about random variables from the course to which you appeal. You are not expected to evaluate explicitly the integral

m(α)=0xαπ(1+x2)dxm(\alpha)=\int_{0}^{\infty} \frac{x^{\alpha}}{\pi\left(1+x^{2}\right)} d x