Paper 2, Section II, I

Applied Probability
Part II, 2010

(a) Let SkS_{k} be the sum of kk independent exponential random variables of rate kμk \mu. Compute the moment generating function ϕSk(θ)=EeθSk\phi_{S_{k}}(\theta)=\mathbb{E} e^{\theta S_{k}} of SkS_{k}. Show that, as kk \rightarrow \infty, functions ϕSk(θ)\phi_{S_{k}}(\theta) converge to a limit. Describe the random variable SS for which the limiting function limkϕSk(θ)\lim _{k \rightarrow \infty} \phi_{S_{k}}(\theta) coincides with EeθS\mathbb{E} e^{\theta S}.

(b) Define the M/G/1M / G / 1 queue with infinite capacity (sometimes written M/G/1/M / G / 1 / \infty ). Introduce the embedded discrete-time Markov chain (Xn)\left(X_{n}\right) and write down the recursive relation between XnX_{n} and Xn1X_{n-1}.

Consider, for each fixed kk and for 0<λ<μ0<\lambda<\mu, an M/G/1/\mathrm{M} / \mathrm{G} / 1 / \infty queue with arrival rate λ\lambda and with service times distributed as SkS_{k}. Assume that the queue is empty at time 0 . Let TkT_{k} be the earliest time at which a customer departs leaving the queue empty. Let AA be the first arrival time and Bk=TkAB_{k}=T_{k}-A the length of the busy period.

(c) Prove that the moment generating functions ϕBk(θ)=EeθBk\phi_{B_{k}}(\theta)=\mathbb{E} e^{\theta B_{k}} and ϕSk(θ)\phi_{S_{k}}(\theta) are related by the equation

ϕBk(θ)=ϕSk(θλ(1ϕBk(θ)))\phi_{B_{k}}(\theta)=\phi_{S_{k}}\left(\theta-\lambda\left(1-\phi_{B_{k}}(\theta)\right)\right)

(d) Prove that the moment generating functions ϕTk(θ)=EeθTk\phi_{T_{k}}(\theta)=\mathbb{E} e^{\theta T_{k}} and ϕSk(θ)\phi_{S_{k}}(\theta) are related by the equation

λθλϕTk(θ)=ϕSk((λθ)(ϕTk(θ)1))\frac{\lambda-\theta}{\lambda} \phi_{T_{k}}(\theta)=\phi_{S_{k}}\left((\lambda-\theta)\left(\phi_{T_{k}}(\theta)-1\right)\right)

(e) Assume that, for all θ<λ\theta<\lambda,

limkϕBk(θ)=EeθB,limkϕTk(θ)=EeθT,\lim _{k \rightarrow \infty} \phi_{B_{k}}(\theta)=\mathbb{E} e^{\theta B}, \quad \lim _{k \rightarrow \infty} \phi_{T_{k}}(\theta)=\mathbb{E} e^{\theta T},

for some random variables BB and TT. Calculate EB\mathbb{E} B and ET\mathbb{E} T. What service time distribution do these values correspond to?