Paper 4, Section II, C

Statistical Physics
Part II, 2010

(i) Let ρi\rho_{i} be the probability that a system is in a state labelled by ii with NiN_{i} particles and energy EiE_{i}. Define

s(ρi)=kiρilogρi.s\left(\rho_{i}\right)=-k \sum_{i} \rho_{i} \log \rho_{i} .

s(ρi)s\left(\rho_{i}\right) has a maximum, consistent with a fixed mean total number of particles NN, mean total energy EE and iρi=1\sum_{i} \rho_{i}=1, when ρi=ρˉi\rho_{i}=\bar{\rho}_{i}. Let S(E,N)=s(ρˉi)S(E, N)=s\left(\bar{\rho}_{i}\right) and show that

SE=1T,SN=μT,\frac{\partial S}{\partial E}=\frac{1}{T}, \quad \frac{\partial S}{\partial N}=-\frac{\mu}{T},

where TT may be identified with the temperature and μ\mu with the chemical potential.

(ii) For two weakly coupled systems 1,2 then ρi,j=ρ1,iρ2,j\rho_{i, j}=\rho_{1, i} \rho_{2, j} and Ei,j=E1,i+E2,jE_{i, j}=E_{1, i}+E_{2, j}, Ni,j=N1,i+N2,jN_{i, j}=N_{1, i}+N_{2, j}. Show that S(E,N)=S1(E1,N1)+S2(E2,N2)S(E, N)=S_{1}\left(E_{1}, N_{1}\right)+S_{2}\left(E_{2}, N_{2}\right) where, if S(E,N)S(E, N) is stationary under variations in E1,E2E_{1}, E_{2} and N1,N2N_{1}, N_{2} for E=E1+E2,N=N1+N2E=E_{1}+E_{2}, N=N_{1}+N_{2} fixed, we must have T1=T2,μ1=μ2T_{1}=T_{2}, \mu_{1}=\mu_{2}.

(iii) Define the grand partition function Z(T,μ)\mathcal{Z}(T, \mu) for the system in (i) and show that

klogZ=S1TE+μTN,S=T(kTlogZ)k \log \mathcal{Z}=S-\frac{1}{T} E+\frac{\mu}{T} N, \quad S=\frac{\partial}{\partial T}(k T \log \mathcal{Z})

(iv) For a system with single particle energy levels ϵr\epsilon_{r} the possible states are labelled by i={nr:nr=0,1}i=\left\{n_{r}: n_{r}=0,1\right\}, where Ni=rnr,Ei=rnrϵrN_{i}=\sum_{r} n_{r}, E_{i}=\sum_{r} n_{r} \epsilon_{r} and i=rnr=0,1\sum_{i}=\prod_{r} \sum_{n_{r}=0,1}. Show that

ρˉi=renr(ϵrμ)/kT1+e(ϵrμ)/kT.\bar{\rho}_{i}=\prod_{r} \frac{e^{-n_{r}\left(\epsilon_{r}-\mu\right) / k T}}{1+e^{-\left(\epsilon_{r}-\mu\right) / k T}} .

Calculate nˉr\bar{n}_{r}. How is this related to a free fermion gas?