Paper 1, Section II, I

Stochastic Financial Models
Part II, 2010

What is a Brownian motion? State the reflection principle for Brownian motion.

Let W=(Wt)t0W=\left(W_{t}\right)_{t \geqslant 0} be a Brownian motion. Let M=max0t1WtM=\max _{0 \leqslant t \leqslant 1} W_{t}. Prove

P(Mx,W1xy)=P(Mx,W1x+y)\mathbb{P}\left(M \geqslant x, W_{1} \leqslant x-y\right)=\mathbb{P}\left(M \geqslant x, W_{1} \geqslant x+y\right)

for all x,y0x, y \geqslant 0. Hence, show that the random variables MM and W1\left|W_{1}\right| have the same distribution.

Find the density function of the random variable R=W1/MR=W_{1} / M.