Paper 3, Section II, F

Topics in Analysis
Part II, 2010

(i) Let γ:[0,1]C\{0}\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\} be a continuous map with γ(0)=γ(1)\gamma(0)=\gamma(1). Define the winding number w(γ;0)w(\gamma ; 0) of γ\gamma about the origin.

(ii) For j=0,1j=0,1, let γj:[0,1]C\{0}\gamma_{j}:[0,1] \rightarrow \mathbb{C} \backslash\{0\} be continuous with γj(0)=γj(1)\gamma_{j}(0)=\gamma_{j}(1). Make the following statement precise, and prove it: if γ0\gamma_{0} can be continuously deformed into γ1\gamma_{1} through a family of continuous curves missing the origin, then w(γ0;0)=w(γ1;0)w\left(\gamma_{0} ; 0\right)=w\left(\gamma_{1} ; 0\right).

[You may use without proof the following fact: if γ,δ:[0,1]C\{0}\gamma, \delta:[0,1] \rightarrow \mathbb{C} \backslash\{0\} are continuous with γ(0)=γ(1),δ(0)=δ(1)\gamma(0)=\gamma(1), \delta(0)=\delta(1) and if γ(t)<δ(t)|\gamma(t)|<|\delta(t)| for each t[0,1]t \in[0,1], then w(γ+δ;0)=w(δ;0)w(\gamma+\delta ; 0)=w(\delta ; 0).]

(iii) Let γ:[0,1]C\{0}\gamma:[0,1] \rightarrow \mathbb{C} \backslash\{0\} be continuous with γ(0)=γ(1)\gamma(0)=\gamma(1). If γ(t)\gamma(t) is not equal to a negative real number for each t[0,1]t \in[0,1], prove that w(γ;0)=0w(\gamma ; 0)=0.

(iv) Let D={zC:z1}D=\{z \in \mathbb{C}:|z| \leqslant 1\} and C={zC:z=1}C=\{z \in \mathbb{C}:|z|=1\}. If g:DCg: D \rightarrow C is continuous, prove that for each non-zero integer nn, there is at least one point zCz \in C such that zn+g(z)=0z^{n}+g(z)=0.