Paper 1, Section II, C

Asymptotic Methods
Part II, 2010

For λ>0\lambda>0 let

I(λ)=0bf(x)eλxdx, with 0<b<I(\lambda)=\int_{0}^{b} f(x) \mathrm{e}^{-\lambda x} d x, \quad \text { with } \quad 0<b<\infty

Assume that the function f(x)f(x) is continuous on 0<xb0<x \leqslant b, and that

f(x)xαn=0anxnβf(x) \sim x^{\alpha} \sum_{n=0}^{\infty} a_{n} x^{n \beta}

as x0+x \rightarrow 0_{+}, where α>1\alpha>-1 and β>0\beta>0.

(a) Explain briefly why in this case straightforward partial integrations in general cannot be applied for determining the asymptotic behaviour of I(λ)I(\lambda) as λ\lambda \rightarrow \infty.

(b) Derive with proof an asymptotic expansion for I(λ)I(\lambda) as λ\lambda \rightarrow \infty.

(c) For the function

B(s,t)=01us1(1u)t1du,s,t>0B(s, t)=\int_{0}^{1} u^{s-1}(1-u)^{t-1} d u, \quad s, t>0

obtain, using the substitution u=exu=e^{-x}, the first two terms in an asymptotic expansion as ss \rightarrow \infty. What happens as tt \rightarrow \infty ?

[Hint: The following formula may be useful

Γ(y)=0xy1exdt, for x>0\Gamma(y)=\int_{0}^{\infty} x^{y-1} \mathrm{e}^{-x} d t, \quad \text { for } \quad x>0