Paper 4, Section II, D

Classical Dynamics
Part II, 2010

A system is described by the Hamiltonian H(q,p)H(q, p). Define the Poisson bracket {f,g}\{f, g\} of two functions f(q,p,t),g(q,p,t)f(q, p, t), g(q, p, t), and show from Hamilton's equations that

dfdt={f,H}+ft\frac{d f}{d t}=\{f, H\}+\frac{\partial f}{\partial t}

Consider the Hamiltonian

H=12(p2+ω2q2)H=\frac{1}{2}\left(p^{2}+\omega^{2} q^{2}\right)

and define

a=(piωq)/(2ω)1/2,a=(p+iωq)/(2ω)1/2,a=(p-i \omega q) /(2 \omega)^{1 / 2}, \quad a^{*}=(p+i \omega q) /(2 \omega)^{1 / 2},

where i=1i=\sqrt{-1}. Evaluate {a,a}\{a, a\} and {a,a}\left\{a, a^{*}\right\}, and show that {a,H}=iωa\{a, H\}=-i \omega a and {a,H}=iωa\left\{a^{*}, H\right\}=i \omega a^{*}. Show further that, when f(q,p,t)f(q, p, t) is regarded as a function of the independent complex variables a,aa, a^{*} and of tt, one has

dfdt=iω(afaafa)+ft\frac{d f}{d t}=i \omega\left(a^{*} \frac{\partial f}{\partial a^{*}}-a \frac{\partial f}{\partial a}\right)+\frac{\partial f}{\partial t}

Deduce that both logaiωt\log a^{*}-i \omega t and loga+iωt\log a+i \omega t are constant during the motion.