Paper 4, Section II, G

Algebraic Geometry
Part II, 2010

Let EP2E \subseteq \mathbf{P}^{2} be the projective curve obtained from the affine curve y2=(xλ1)(xλ2)(xλ3)y^{2}=\left(x-\lambda_{1}\right)\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right), where the λi\lambda_{i} are distinct and λ1λ2λ30\lambda_{1} \lambda_{2} \lambda_{3} \neq 0.

(i) Show there is a unique point at infinity, PP_{\infty}.

(ii) Compute div(x),div(y)\operatorname{div}(x), \operatorname{div}(y).

(iii) Show L(P)=k\mathcal{L}\left(P_{\infty}\right)=k.

(iv) Compute l(nP)l\left(n P_{\infty}\right) for all nn.

[You may not use the Riemann-Roch theorem.]