Paper 4, Section II, A

Fluid Dynamics II
Part II, 2010

An axisymmetric incompressible Stokes flow has the Stokes stream function Ψ(R,θ)\Psi(R, \theta) in spherical polar coordinates (R,θ,ϕ)(R, \theta, \phi). Give expressions for the components uR,uθu_{R}, u_{\theta} of the flow field in terms of Ψ\Psi. Show that the equation satisfied by Ψ\Psi is

D2(D2Ψ)=0, where D2=2R2+sinθR2θ(1sinθθ)\mathcal{D}^{2}\left(\mathcal{D}^{2} \Psi\right)=0, \quad \text { where } \quad \mathcal{D}^{2}=\frac{\partial^{2}}{\partial R^{2}}+\frac{\sin \theta}{R^{2}} \frac{\partial}{\partial \theta}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\right)

Fluid is contained between the two spheres R=a,R=bR=a, R=b, with bab \gg a. The fluid velocity vanishes on the outer sphere, while on the inner sphere uR=Ucosθ,uθ=0u_{R}=U \cos \theta, u_{\theta}=0. It is assumed that Stokes flow applies.

(i) Show that the Stokes stream function,

Ψ(R,θ)=a2Usin2θ(A(aR)+B(Ra)+C(Ra)2+D(Ra)4)\Psi(R, \theta)=a^{2} U \sin ^{2} \theta\left(A\left(\frac{a}{R}\right)+B\left(\frac{R}{a}\right)+C\left(\frac{R}{a}\right)^{2}+D\left(\frac{R}{a}\right)^{4}\right)

is the general solution of ()(*) proportional to sin2θ\sin ^{2} \theta and write down the conditions on A,B,C,DA, B, C, D that allow all the boundary conditions to be satisfied.

(ii) Now let bb \rightarrow \infty, with u0|\mathbf{u}| \rightarrow 0 as RR \rightarrow \infty. Show that A=B=1/4A=B=1 / 4 with C=D=0C=D=0.

(iii) Show that when b/ab / a is very large but finite, then the coefficients have the approximate form

C38ab,D18a3b3,A14316ab,B14+916abC \approx-\frac{3}{8} \frac{a}{b}, \quad D \approx \frac{1}{8} \frac{a^{3}}{b^{3}}, \quad A \approx \frac{1}{4}-\frac{3}{16} \frac{a}{b}, \quad B \approx \frac{1}{4}+\frac{9}{16} \frac{a}{b}