Paper 1, Section I, E

Further Complex Methods
Part II, 2010

Let the complex-valued function f(z)f(z) be analytic in the neighbourhood of the point z0z_{0} and let u(x,y)u(x, y) be the real part of f(z)f(z). Show that

f(z)=2u(z+zˉ02,zzˉ02i)f(z0),z=x+iyf(z)=2 u\left(\frac{z+\bar{z}_{0}}{2}, \frac{z-\bar{z}_{0}}{2 i}\right)-\overline{f\left(z_{0}\right)}, \quad z=x+i y

Hence find the analytic function whose real part is

ey[xcosxysinx]e^{-y}[x \cos x-y \sin x]