Paper 3, Section I, EFurther Complex MethodsPart II, 2010Let Γ(z)\Gamma(z)Γ(z) and ζ(z)\zeta(z)ζ(z) denote the gamma and the zeta functions respectively, namelyΓ(z)=∫0∞xz−1e−xdx,Rez>0ζ(z)=∑m=1∞1mz,Rez>1\begin{aligned} &\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x, \quad \operatorname{Re} z>0 \\ &\zeta(z)=\sum_{m=1}^{\infty} \frac{1}{m^{z}}, \quad \operatorname{Re} z>1 \end{aligned}Γ(z)=∫0∞xz−1e−xdx,Rez>0ζ(z)=m=1∑∞mz1,Rez>1By employing a series expansion of (1−e−x)−2\left(1-e^{-x}\right)^{-2}(1−e−x)−2, prove the following identity∫0∞xz(ex−1)2dx=Γ(z+1)[ζ(z)−ζ(z+1)],Rez>1\int_{0}^{\infty} \frac{x^{z}}{\left(e^{x}-1\right)^{2}} d x=\Gamma(z+1)[\zeta(z)-\zeta(z+1)], \quad \operatorname{Re} z>1∫0∞(ex−1)2xzdx=Γ(z+1)[ζ(z)−ζ(z+1)],Rez>1