Paper 4, Section II, E

Further Complex Methods
Part II, 2010

The hypergeometric function F(a,b;c;z)F(a, b ; c ; z) can be expressed in the form

F(a,b;c;z)=Γ(c)Γ(b)Γ(cb)01tb1(1t)cb1(1tz)adtF(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t

for appropriate restrictions on c,b,zc, b, z.

Express the following integral in terms of a combination of hypergeometric functions

I(u,A)=π2π2eit(u+1)eit+iAdt,A>1I(u, A)=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{e^{i t(u+1)}}{e^{i t}+i A} d t, \quad|A|>1

[You may use without proof that Γ(z+1)=zΓ(z).\Gamma(z+1)=z \Gamma(z) . ]