Paper 1, Section II, E

Further Complex Methods
Part II, 2010

Consider the partial differential equation for u(x,t)u(x, t),

ut=2ux2+βux,β>0,0<x<,t>0\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\beta \frac{\partial u}{\partial x}, \quad \beta>0, \quad 0<x<\infty, \quad t>0

where u(x,t)u(x, t) is required to vanish rapidly for all tt as xx \rightarrow \infty.

(i) Verify that the PDE ()(*) can be written in the following form

(eikx+(k2iβk)tu)t=(eikx+(k2iβk)t[(ik+β)u+ux])x\left(e^{-i k x+\left(k^{2}-i \beta k\right) t} u\right)_{t}=\left(e^{-i k x+\left(k^{2}-i \beta k\right) t}\left[(i k+\beta) u+u_{x}\right]\right)_{x}

(ii) Define u^(k,t)=0eikxu(x,t)dx\hat{u}(k, t)=\int_{0}^{\infty} e^{-i k x} u(x, t) d x, which is analytic for Imk0\operatorname{Im} k \leqslant 0. Determine u^(k,t)\hat{u}(k, t) in terms of u^(k,0)\hat{u}(k, 0) and also the functions f0,f1f_{0}, f_{1} defined by

f0(ω,t)=0teω(tt)u(0,t)dt,f1(ω,t)=0teω(tt)ux(0,t)dtf_{0}(\omega, t)=\int_{0}^{t} e^{-\omega\left(t-t^{\prime}\right)} u\left(0, t^{\prime}\right) d t^{\prime}, \quad f_{1}(\omega, t)=\int_{0}^{t} e^{-\omega\left(t-t^{\prime}\right)} u_{x}\left(0, t^{\prime}\right) d t^{\prime}

(iii) Show that in the inverse transform expression for u(x,t)u(x, t) the integrals involving f0,f1f_{0}, f_{1} may be transformed to the contour

L={kC:Re(k2iβk)=0,Imkβ}L=\left\{k \in \mathbb{C}: \operatorname{Re}\left(k^{2}-i \beta k\right)=0, \operatorname{Im} k \geqslant \beta\right\}

By considering u^(k,t)\hat{u}\left(k^{\prime}, t\right) where k=k+iβk^{\prime}=-k+i \beta and kLk \in L, show that it is possible to obtain an equation which allows f1f_{1} to be eliminated.

(iv) Obtain an integral expression for the solution of ()(*) subject to the the initialboundary value conditions of given u(x,0),u(0,t)u(x, 0), u(0, t).

[You need to show that

Leikxu^(k,t)dk=0,x>0,\int_{L} e^{i k x} \hat{u}\left(k^{\prime}, t\right) d k=0, \quad x>0,

by an appropriate closure of the contour which should be justified.]