Paper 2, Section II, H

Galois Theory
Part II, 2010

(1) Let F=Q(53,5,i)F=\mathbb{Q}(\sqrt[3]{5}, \sqrt{5}, i). What is the degree of F/QF / \mathbb{Q} ? Justify your answer.

(2) Let FF be a splitting field of X45X^{4}-5 over Q\mathbb{Q}. Determine the Galois group Gal(F/Q)\operatorname{Gal}(F / \mathbb{Q}). Determine all the subextensions of F/QF / \mathbb{Q}, expressing each in the form Q(x)\mathbb{Q}(x) or Q(x,y)\mathbb{Q}(x, y) for some x,yFx, y \in F.

[Hint: If an automorphism ρ\rho of a field XX has order 2 , then for every xXx \in X the element x+ρ(x)x+\rho(x) is fixed by ρ\rho.]