Paper 2, Section II, E

Integrable Systems
Part II, 2010

Consider the Gelfand-Levitan-Marchenko (GLM) integral equation

K(x,y)+F(x+y)+xK(x,z)F(z+y)dz=0K(x, y)+F(x+y)+\int_{x}^{\infty} K(x, z) F(z+y) d z=0

with F(x)=1NβnecnxF(x)=\sum_{1}^{N} \beta_{n} e^{-c_{n} x}, where c1,,cNc_{1}, \ldots, c_{N} are positive constants and β1,,βN\beta_{1}, \ldots, \beta_{N} are constants. Consider separable solutions of the form

K(x,y)=n=1NKn(x)ecnyK(x, y)=\sum_{n=1}^{N} K_{n}(x) e^{-c_{n} y}

and reduce the GLM equation to a linear system

m=1NAnm(x)Km(x)=Bn(x)\sum_{m=1}^{N} A_{n m}(x) K_{m}(x)=B_{n}(x)

where the matrix Anm(x)A_{n m}(x) and the vector Bn(x)B_{n}(x) should be determined.

How is KK related to solutions of the KdVK d V equation?

Set N=1,c1=c,β1=βexp(8c3t)N=1, c_{1}=c, \beta_{1}=\beta \exp \left(8 c^{3} t\right) where c,βc, \beta are constants. Show that the corresponding one soliton solution of the KdV\mathrm{KdV} equation is given by

u(x,t)=4β1ce2cx(1+(β1/2c)e2cx)2u(x, t)=-\frac{4 \beta_{1} c e^{-2 c x}}{\left(1+\left(\beta_{1} / 2 c\right) e^{-2 c x}\right)^{2}}

[You may use any facts about the Inverse Scattering Transform without proof.]