Paper 2, Section II, H

Linear Analysis
Part II, 2010

For a sequence x=(x1,x2,)x=\left(x_{1}, x_{2}, \ldots\right) with xjCx_{j} \in \mathbb{C} for all j1j \geqslant 1, let

x:=supj1xj\|x\|_{\infty}:=\sup _{j \geqslant 1}\left|x_{j}\right|

and ={x=(x1,x2,):xjC\ell^{\infty}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{j} \in \mathbb{C}\right. for all j1j \geqslant 1 and x<}\left.\|x\|_{\infty}<\infty\right\}.

a) Prove that \ell^{\infty} is a Banach space.

b) Define

c0={x=(x1,x2,):limjxj=0}c_{0}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{\infty}: \lim _{j \rightarrow \infty} x_{j}=0\right\}

and

1={x=(x1,x2,):xjC for all jN and x1==1x<}\ell^{1}=\left\{x=\left(x_{1}, x_{2}, \ldots\right): x_{j} \in \mathbb{C} \text { for all } j \in \mathbb{N} \text { and }\|x\|_{1}=\sum_{\ell=1}^{\infty}\left|x_{\ell}\right|<\infty\right\}

Show that c0c_{0} is a closed subspace of \ell^{\infty}. Show that c01c_{0}^{*} \simeq \ell^{1}.

[Hint: find an isometric isomorphism from 1\ell^{1} to c0.]\left.c_{0}^{*} .\right]

c) Let

c00={x=(x1,x2,):xj=0 for all j large enough }.c_{00}=\left\{x=\left(x_{1}, x_{2}, \ldots\right) \in \ell^{\infty}: x_{j}=0 \text { for all } j \text { large enough }\right\} .

Is c00c_{00} a closed subspace of ?\ell^{\infty} ? If not, what is the closure of c00?c_{00} ?