Paper 2, Section I, G

Number Theory
Part II, 2010

Let pp be an odd prime number. If nn is an integer prime to pp, define (np)\left(\frac{n}{p}\right).

(i) Prove that χ(n)=(np)\chi(n)=\left(\frac{n}{p}\right) defines a homomorphism from (Z/pZ)×(\mathbb{Z} / p \mathbb{Z})^{\times}to the group {±1}\{\pm 1\}. What is the value of χ(1)?\chi(-1) ?

(ii) If p1mod4p \equiv 1 \bmod 4, prove that n=1p1χ(n)n=0\sum_{n=1}^{p-1} \chi(n) n=0.