Paper 4, Section II, E

Applications of Quantum Mechanics
Part II, 2011

A particle of charge e-e and mass mm moves in a magnetic field B(x,t)\boldsymbol{B}(\boldsymbol{x}, t) and in an electric potential ϕ(x,t)\phi(\boldsymbol{x}, t). The time-dependent Schrödinger equation for the particle's wavefunction Ψ(x,t)\Psi(\boldsymbol{x}, t) is

i(tieϕ)Ψ=22m(+ieA)2Ψi \hbar\left(\frac{\partial}{\partial t}-\frac{i e}{\hbar} \phi\right) \Psi=-\frac{\hbar^{2}}{2 m}\left(\nabla+\frac{i e}{\hbar} \boldsymbol{A}\right)^{2} \Psi

where A\boldsymbol{A} is the vector potential with B=A\boldsymbol{B}=\boldsymbol{\nabla} \wedge \boldsymbol{A}. Show that this equation is invariant under the gauge transformations

A(x,t)A(x,t)+f(x,t)ϕ(x,t)ϕ(x,t)tf(x,t)\begin{array}{ll} \boldsymbol{A}(\boldsymbol{x}, t) & \rightarrow \boldsymbol{A}(\boldsymbol{x}, t)+\boldsymbol{\nabla} f(\boldsymbol{x}, t) \\ \phi(\boldsymbol{x}, t) & \rightarrow \quad \phi(\boldsymbol{x}, t)-\frac{\partial}{\partial t} f(\boldsymbol{x}, t) \end{array}

where ff is an arbitrary function, together with a suitable transformation for Ψ\Psi which should be stated.

Assume now that Ψ/z=0\partial \Psi / \partial z=0, so that the particle motion is only in the xx and yy directions. Let B\boldsymbol{B} be the constant field B=(0,0,B)\boldsymbol{B}=(0,0, B) and let ϕ=0\phi=0. In the gauge where A=(By,0,0)\boldsymbol{A}=(-B y, 0,0) show that the stationary states are given by

Ψk(x,t)=ψk(x)eiEt/\Psi_{k}(\boldsymbol{x}, t)=\psi_{k}(\boldsymbol{x}) e^{-i E t / \hbar}

with

ψk(x)=eikxχk(y)\psi_{k}(\boldsymbol{x})=e^{i k x} \chi_{k}(y)

Show that χk(y)\chi_{k}(y) is the wavefunction for a simple one-dimensional harmonic oscillator centred at position y0=k/eBy_{0}=\hbar k / e B. Deduce that the stationary states lie in infinitely degenerate levels (Landau levels) labelled by the integer n0n \geqslant 0, with energy

En=(2n+1)eB2mE_{n}=(2 n+1) \frac{\hbar e B}{2 m}

A uniform electric field E\mathcal{E} is applied in the yy-direction so that ϕ=Ey\phi=-\mathcal{E} y. Show that the stationary states are given by ()(*), where χk(y)\chi_{k}(y) is a harmonic oscillator wavefunction centred now at

y0=1eB(kmEB)y_{0}=\frac{1}{e B}\left(\hbar k-m \frac{\mathcal{E}}{B}\right)

Show also that the eigen-energies are given by

En,k=(2n+1)eB2m+eEy0+mE22B2.E_{n, k}=(2 n+1) \frac{\hbar e B}{2 m}+e \mathcal{E} y_{0}+\frac{m \mathcal{E}^{2}}{2 B^{2}} .

Why does this mean that the Landau energy levels are no longer degenerate in two dimensions?