Paper 1, Section II, A

Partial Differential Equations
Part II, 2011

Let H=H(x,v),x,vRnH=H(x, v), x, v \in \mathbb{R}^{n}, be a smooth real-valued function which maps R2n\mathbb{R}^{2 n} into R\mathbb{R}. Consider the initial value problem for the equation

ft+vHxfxHvf=0,x,vRn,t>0f(x,v,t=0)=fI(x,v),x,vRn\begin{aligned} &f_{t}+\nabla_{v} H \cdot \nabla_{x} f-\nabla_{x} H \cdot \nabla_{v} f=0, \quad x, v \in \mathbb{R}^{n}, t>0 \\ &f(x, v, t=0)=f_{I}(x, v), \quad x, v \in \mathbb{R}^{n} \end{aligned}

for the unknown function f=f(x,v,t)f=f(x, v, t).

(i) Use the method of characteristics to solve the initial value problem, locally in time.

(ii) Let fI0f_{I} \geqslant 0 on R2n\mathbb{R}^{2 n}. Use the method of characteristics to prove that ff remains non-negative (as long as it exists).

(iii) Let F:RRF: \mathbb{R} \rightarrow \mathbb{R} be smooth. Prove that

R2nF(f(x,v,t))dxdv=R2nF(fI(x,v))dxdv\int_{\mathbb{R}^{2 n}} F(f(x, v, t)) d x d v=\int_{\mathbb{R}^{2 n}} F\left(f_{I}(x, v)\right) d x d v

as long as the solution exists.

(iv) Let HH be independent of xx, namely H(x,v)=a(v)H(x, v)=a(v), where aa is smooth and realvalued. Give the explicit solution of the initial value problem.