Paper 2, Section II, A

Partial Differential Equations
Part II, 2011

Consider the Schrödinger equation

itψ(t,x)=12Δψ(t,x)+V(x)ψ(t,x),xRn,t>0ψ(t=0,x)=ψI(x),xRn\begin{aligned} i \partial_{t} \psi(t, x) &=-\frac{1}{2} \Delta \psi(t, x)+V(x) \psi(t, x), \quad x \in \mathbb{R}^{n}, t>0 \\ \psi(t=0, x) &=\psi_{I}(x), \quad x \in \mathbb{R}^{n} \end{aligned}

where VV is a smooth real-valued function.

Prove that, for smooth solutions, the following equations are valid for all t>0t>0 :

(i)

Rnψ(t,x)2dx=RnψI(x)2dx\int_{\mathbb{R}^{n}}|\psi(t, x)|^{2} d x=\int_{\mathbb{R}^{n}}\left|\psi_{I}(x)\right|^{2} d x

(ii)

Rn12ψ(t,x)2dx+RnV(x)ψ(t,x)2dx=Rn12ψI(x)2dx+RnV(x)ψI(x)2dx\begin{aligned} &\int_{\mathbb{R}^{n}} \frac{1}{2}|\nabla \psi(t, x)|^{2} d x+\int_{\mathbb{R}^{n}} V(x)|\psi(t, x)|^{2} d x \\ &=\int_{\mathbb{R}^{n}} \frac{1}{2}\left|\nabla \psi_{I}(x)\right|^{2} d x+\int_{\mathbb{R}^{n}} V(x)\left|\psi_{I}(x)\right|^{2} d x \end{aligned}